
U n i v e r s i t y o f C a l i f o r n i a L a w r e n c e L i v e r m o r e N a t i o n a l L a b o r a t o r y

be described via this new interface.
The advantage is that the interface
allows the underlying solver technology
to take advantage of the structure that is
present.

For instance, geometric multigrid
ideas can be used, the primary compu-
tational kernels can be made very
efficient, and storage can be mini-
mized. In particular, several of the
application codes (SAMRAI, ALPS, and
AMRH) are using our current struc-
tured-grid solvers to do “level solves” in
AMR applications. These level solves
are usually embedded in an outer lin-
ear iterative solver such as the Fast
Adaptive Composite (FAC) grid method.
With this new interface, these solvers
(i.e., FAC) can now be supported
directly in the linear solver library.

One of the strengths of hypre’s
design is that more general solvers are
accessible through more specific con-
ceptual interfaces. Thus, existing
general matrix solvers BoomerAMG,
PILUT, and ParaSAILS (Figure 3) are
available through the more specific
interfaces like the semi-structured inter-
face. This concept extends to
interoperability with other linear solver
libraries such as those found in libraries
like PETSc and Aztec: solvers in these

UCRL-TB-146019 URL: http://www.llnl.gov/CASC/hypre

(there are currently four). Figure 1
illustrates the idea behind conceptual
interfaces. These interfaces (depicted
in the top row of the figure) have a
number of advantages:
• provide a more natural “view” of the

linear system for applications.
• ease the coding burden for users by

eliminating the need to map to
rows/columns of a matrix (this can
be extremely difficult in parallel).

• provide for more scalable “greybox”
linear solvers.

• provide for more effective data stor-
age schemes and more efficient
computational kernels.

• provide polymorphic access to
many of hypre’s solvers, i.e., appli-
cation codes can experiment with
different hypre solvers by changing
only a single line of their source
code.
The newest conceptual interface is

the semi-structured interface, now
implemented fully in parallel in hypre.
This interface allows users to describe
problems that are mostly structured,
but with some unstructured features in
them. For example, problems on
block-structured grids (see Figure 2),
structured adaptive mesh refinement
(SAMR) grids, and overset grids can all

hypre
High Performance
Preconditioners

The solution of a large system of linear
equations is the key computational bot-
tleneck in many scientific and
engineering applications. For example,
the systems that arise in numerical sim-
ulation of three-dimensional radiation
hydrodynamics may have upwards of
100 million unknowns. For problems
of this size, one needs a scalable linear
solver. In the context of preconditioned
iterative methods, this means that the
number of iterations required for con-
vergence is independent of problem
size. If this algorithmic scalability is
coupled with a scalable implementa-
tion on a massively parallel computer,
then the time to solution will remain
constant as problem size increases with
the number of processors.

CC
ASC researchers in the
Scalable Linear Solvers pro-
ject are researching and

developing methods for the scalable
solution of large linear systems, includ-
ing new parallel geometric and
algebraic multigrid methods, incom-
plete factorization methods, and sparse
approximate algorithms. The hypre
project facilitates the use of these new
algorithms in application codes
through their development of the hypre
library. The algorithms are implemented
in a portable manner using standards
such as MPI and OpenMP. Application
interfaces are developed that ease the
integration of hypre into complex
application codes. Members of the
hypre team work closely with key
application customers, particularly
those in the ASCI program (Advanced
Simulation and Computing), to help
them use hypre optimally within their
codes and to gather requirements for
further hypre development.

Conceptual Interfaces
Access to the linear solvers in hypre

is achieved via conceptual interfaces

Figure 1: Conceptual interfaces are more natural for users, simplify coding, and provide access to
better solvers.

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

High Performance Preconditioners

libraries could be accessed through
hypre if they shared the same concep-
tual interfaces.

Collaborations
Along these lines, the hypre project

is collaborating with the CASC
Components project, the ESI (Equation
Solver Interface) forum, and the CCA
(Common Component Architecture)
forum, to develop standardized inter-
faces such as the semi-structured
interface described above.

To further increase interoperability,
the language interoperability tool
“Babel” developed in the Components
project is being used to provide basic
object-oriented support and language
interoperability to hypre. This will
make hypre callable from many differ-
ent languages, including C, C++, Java,
Python, Fortran, and whatever new lan-
guages Babel supports. This is expected
to be completed in 2002.

For more information contact
Andy Cleary (925) 424-5890, or visit
the Website at www.llnl.gov/casc/hypre.

Figure 2: Semi-structured interface is used to
describe problems that are mostly structured.

Figure 4: One setup phase algorithm scales like P, while a second algoithm scales like log(P).

Figure 3: The exact sparsity pattern of the inverse of a sparse matrix shows that it can be well
approximated by a sparse matrix.

